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Hard to believe, but it is already time for the second edition! I am happy to report 
that the first edition of A First Course in Systems Biology has met with great suc-
cess. The book has been a required or recommended text for over 70 courses 
worldwide, and it has even been translated into Korean. So why should a new 
edition be necessary after only five short years? Well, much has happened. 
 Systems biology has come out of the shadows with gusto. Research is flourishing 
worldwide, quite a few new journals have been launched, and many institutions 
now offer courses in the field. 

While the landscape of systems biology has evolved rapidly, the fundamental 
topics covered by the first edition are as important as they were five years ago 
and probably will be several decades from now. Thus, I decided to retain the 
structure of the first edition but have rearranged some items and added a few 
topics, along with new examples. At Georgia Tech we have used the book to 
teach well over 1000 students, mostly at the undergraduate level, but also for an 
introductory graduate-level course. Most of the additions and amendments to 
this new edition respond to feedback from these students and their instructors, 
who have pointed out aspects of the material where more or better explanations 
and illustrations would be helpful. New topics in this edition include: default 
modules for model design, limit cycles and chaos, parameter estimation in 
Excel, model representations of gene regulation through transcription factors, 
derivation of the Michaelis-Menten rate law from the original conceptual 
model, different types of inhibition, hysteresis, a model of differentiation, 
 system adaptation to persistent signals, nonlinear nullclines, PBPK models, and 
elementary modes. 

I would like to thank three undergraduates from my classes who helped me with 
the development of some of the new examples, namely Carla Kumbale, Kavya 
Muddukumar, and Gautam Rangavajla. Quite a few other students have helped 
me with the creation of new practice exercises, many of which are available on 
the book’s support website. I also want to express my gratitude to David 
 Borrowdale, Katie Laurentiev, Georgina Lucas, Denise Schanck, and Summers 
Scholl at Garland Science for shepherding this second edition through the 
review and production process.

It is my hope that this new edition retains the appeal of the original and has 
become even better through the alterations and twists it has taken, large and 
small. 

Eberhard Voit
Georgia Tech
2017
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Instructor Resources Website

The images from A First Course in Systems Biology, Second Edition are available 
on the Instructor Site in two convenient formats: PowerPoint® and JPEG. They 
have been optimized for display on a computer. Solutions to end-of-chapter 
exercises are also available. The resources may be browsed by individual chap-
ters and there is a search engine. Figures are searchable by figure number, figure 
name, or by keywords used in the figure legend from the book.

Accessible from www.garlandscience.com, the Instructor’s Resource Site 
requires registration and access is available only to qualified instructors. To 
access the Instructor Resource site, please email science@garland.com.
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When you have read this chapter, you should be able to:

• Describe the generic features of biological systems

• Explain the goals of systems biology

• Identify the complementary roles of reductionism and systems biology

• List those challenges of systems biology that cannot be solved with intuition 
alone

• Assemble a “to-do” list for the field of systems biology

When we think of biological systems, our minds may immediately wander to the 
Amazon rainforest, brimming with thousands of plants and animals that live with 
each other, compete with each other, and depend on each other. We might think of 
the incredible expanse of the world’s oceans, of colorful fish swimming through 
coral reefs, nibbling on algae. Two-meter-high African termite mounds may come 
to mind, with their huge colonies of individuals that have their specific roles and 
whose lives are controlled by an intricate social structure (Figure 1.1). We may think 
of an algae-covered pond with tadpoles and minnows that are about to restart yet 
another life cycle.

These examples are indeed beautiful manifestations of some of the fascinating 
systems nature has evolved. However, we don’t have to look that far to find biologi-
cal systems. Much, much smaller systems are in our own bodies and even within our 
cells. Kidneys are waste-disposal systems. Mitochondria are energy-production sys-
tems. Ribosomes are intracellular machines that make proteins from amino acids. 
Bacteria are amazingly complicated biological systems. Viruses interact with cells in 
a well-controlled, systemic way. Even seemingly modest tasks often involve an 
amazingly large number of processes that form complicated control systems 
( Figure 1.2). The more we learn about the most basic processes of life, such as cell 
division or the production of a metabolite, the more we have to marvel the incredi-
ble complexity of the systems that facilitate these processes. In our daily lives, we 
usually take these systems for granted and assume that they function adequately, 
and it is only when, for example, disease strikes or algal blooms kill fish that we 
 realize how complex biology really is and how damaging the failure of just a single 
component can be.

We and our ancestors have been aware of biological systems since the beginning 
of human existence. Human birth, development, health, disease, and death have 
long been recognized as interwoven with those of plants and animals, and with the 
environment. For our forebears, securing food required an understanding of sea-
sonal changes in the ecological systems of their surroundings. Even the earliest for-
ays into agriculture depended on detailed concepts and ideas of when and what to 

Biological Systems 1
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Figure 1.1 Biological systems abound at 

all size scales. Here, a termite mound in 
Namibia is visible evidence of a complex 
social system. This system is part of a larger 
ecological system, and it is at once the host 
to many systems at smaller scales. (Courtesy 
of Lothar Herzog under the Creative 
Commons Attribution 2.0 Generic license.)
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Figure 1.2 Diagram of a complicated 

system of molecules that coordinate the 

response of plants to drought. While the 
details are not important here, we can see 
that a key hormone, called abscisic acid 
(ABA), triggers a cascade of reactions that 
ultimately promote the closure of stomata 
and thereby reduce water evaporation [1]. 
Even a narrowly defined response like this 
closure process involves a complicated 
control system that contains a multitude of 
molecules and their interactions. In turn, this 
system is just one component within a much 
larger, physiological stress response system 
(cf. Figure 1.7). (From Saadatpour A, Albert I 
& Albert A. J. Theor. Biol. 266 [2010] 641–656. 
With permission from Elsevier.)

plant, how  and where to plant it, how many seeds to eat or to save for sowing, and 
when to expect returns on the investment. Several thousand years ago, the Egyp-
tians managed to ferment sugars to alcohol and used the mash to bake bread. Early 
pharmaceutical treatments of diseases certainly contained a good dose of supersti-
tion, and we are no longer convinced that rubbing on the spit of a toad during full 
moon will cure warts, but the beginnings of pharmaceutical science in antiquity and 
the Middle Ages also demonstrate a growing recognition that particular plant prod-
ucts can have significant and specific effects on the well-being or malfunctioning of 
the systems within the human body.

In spite of our long history of dealing with biological systems, our mastery of 
engineered systems far outstrips our capability to manipulate biological systems. 
We send spaceships successfully to faraway places and predict correctly when they 
will arrive and where they will land. We build skyscrapers exceeding by hundreds of 
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times the sizes of the biggest animals and plants. Our airplanes are faster, bigger, 
and more robust against turbulence than the most skillful birds. Yet, we cannot cre-
ate new human cells or tissues from basic building blocks and we are seldom able to 
cure diseases except with rather primitive methods like cutting into the body or kill-
ing a lot of healthy tissue in the process, hoping that the body will heal itself after-
wards. We can anticipate that our grandchildren will only shake their heads at such 
medieval-sounding, draconian measures. We have learned to create improved 
microorganisms, for instance for the bulk production of industrial alcohol or the 
generation of pure amino acids, but the methods for doing so rely on bacterial 
machinery that we do not fully understand and on artificially induced random 
mutations rather than targeted design strategies.

Before we discuss the roots of the many challenges associated with understand-
ing and manipulating biological systems in a targeted fashion, and our problems 
predicting what biological systems will do under yet-untested conditions, we should 
ask whether the goal of a deeper understanding of biological systems is even worth 
the effort. The answer is a resounding “Yes!” In fact, it is impossible even to imagine 
the potential and scope of advances that might develop from biological systems 
analyses. Just as nobody during the eighteenth century could foresee the ramifica-
tions of the Industrial Revolution or of electricity, the Biological Revolution will 
usher in an entirely new world with incredible possibilities. Applications that are 
already emerging on the horizon are personalized medical treatments with minimal 
side effects, pills that will let the body regain control over a tumor that has run amok, 
prevention and treatment of neurodegenerative diseases, and the creation of spare 
organs from reprogrammed stem cells. A better understanding of ecological  systems 
will yield pest- and drought-resistant food sources, as well as means for restoring 
polluted soil and water. It will help us understand why certain species are threat-
ened and what could be done effectively to counteract their decline. Deeper insights 
into aquatic systems will lead to cleaner water and sustainable fisheries. Repro-
grammed microbes or nonliving systems composed of biological components will 
dominate the production of chemical compounds from prescription drugs to large-
scale industrial organics, and might create energy sources without equal. Modified 
viruses will become standard means for supplying cells with healthy proteins or 
replacement genes. The rewards of discovering and characterizing the general prin-
ciples and the specifics of biological systems will truly be unlimited.

If it is possible to engineer very sophisticated machines and to predict exactly 
what they will do, why are biological systems so different and difficult? One crucial 
difference is that we have full control over engineered systems, but not over biologi-
cal systems. As a society, we collectively know all details of all parts of engineered 
machines, because we made them. We know their properties and functions, and we 
can explain how and why some engineer put a machine together in a particular 
fashion. Furthermore, most engineered systems are modular, with each module 
being designed for a unique, specific task. While these modules interact with each 
other, they seldom have multiple roles in different parts of the system, in contrast to 
biology and medicine, where, for instance, the same lipids can be components of 
membranes and have complicated signaling functions, and where diseases are 
often not restricted to a single organ or tissue, but may affect the immune system 
and lead to changes in blood pressure and blood chemistry that secondarily cause 
kidney and heart problems. A chemical refinery looks overwhelmingly complicated 
to a layperson, but for an industrial engineer, every piece has a specific, well-defined 
role within the refinery, and every piece or module has properties that were opti-
mized for this role. Moreover, should something go wrong, the machines and facto-
ries will have been equipped with sensors and warning signals pinpointing problems 
as soon as they arise and allowing corrective action.

In contrast to dealing with sophisticated, well-characterized engineered sys-
tems, the analysis of biological systems requires investigations in the opposite direc-
tion. This type of investigation resembles the task of looking at an unknown machine 
and predicting what it does (Figure 1.3). Adding to this challenge, all scientists col-
lectively know only a fraction of the components of biological systems, and the spe-
cific roles and interactions between these components are often obscure and 
change over time. Even more than engineered systems, biological systems are full of 
sensors and signals that indicate smooth running or ensuing problems, but in most 
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cases our experiments cannot directly perceive and measure these signals and we 
can only indirectly deduce their existence and function. We observe organisms, 
cells, or intracellular structures as if from a large distance and must deduce from 
rather coarse observations how they might function or why they fail.

What exactly is it that makes biological systems so difficult to grasp? It is cer-
tainly not just size. Figure 1.4 shows two networks. One shows the vast highway 
system of the continental United States, which covers several million miles of major 

Figure 1.4 The size of a network or 

system is not necessarily correlated 

with its complexity. (A) The network of 
major highways in the continental United 
States covers over 3 million square miles. 
Nonetheless, its functionality is easy to  
grasp, and problems with a particular road  
are readily ameliorated with detours.  
(B) The web of the European diadem spider 
(Araneus diadematus) (C) is comparatively 
small, but the functional details of this little 
network are complex. Some lines are made 
of silk proteins that have the tensile strength 
of steel but can also be eaten and recycled 
by the spider; other lines are adhesive due 
to a multipurpose glue that may be sticky 
or rubbery depending on the situation; 
yet others are guide and signal lines that 
allow the spider to move about and sense 
prey. The creation of the web depends on 
different types of spinneret glands, whose 
development and function require the 
complex molecular machinery of the spider, 
and it is not yet clear how the instructions for 
the complicated construction, repair, and use 
of the web are encoded and inherited from 
one generation to the next. ((A) From the 
United States Department of Transportation.)

(A)

(B) (C)

Figure 1.3 Analyzing a biological system 

resembles the task of determining the 

function of a complicated machine 

that we have never seen before. Shown 
here as an example is the cesium fountain 
laser table of the United States Naval 
Observatory, which is used to measure time 
with extreme accuracy. This atomic clock is 
based on transitions in cesium, which have a 
frequency of 9,192,631,770 Hz and are used 
to define the second. See also [2].
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Figure 1.5 Biological phenomena are often 

difficult to understand, because our minds 

are trained to think linearly. (A) The return 
on an investment grows (or decreases) linearly 
with the amount invested. (B) In biology, more 
is not necessarily better. Biological responses 
often scale within a modest range, but lead 
to an entirely different response if the input is 
increased a lot.

$100 investment $120 return

× 100

× 100

1 tablespoon of fertilizer 50 blossoms

(A)

$10,000 investment $12,000 return

100 tablespoons of fertilizer dead roses!

(B)

highways. It is a very large system, but it is not difficult to understand its function or 
malfunction: if a highway is blocked, it does not take much ingenuity to figure out 
how to circumvent the obstacle. The other network is a comparably tiny system: the 
web of a diadem spider. While we can observe the process and pattern with which 
Ms. Spider spins her web, we do not know which neurons in her brain are respon-
sible for different phases of the complicated web production process and how she 
is able to produce the right chemicals for the spider silk, which in itself is a marvel 
of material science, let alone how she manages to survive, multiply, and maybe 
even devour her husband.

Biological systems often consist of large numbers of components, but they pose 
an additional, formidable challenge to any analysis, because the processes that 
 govern them are not linear. This is a problem, because we are trained to think in 
linear ways: if an investment of $100 leads to a return of $120, then an investment of 
$10,000 leads to a return of $12,000. Biology is different. If we fertilize our roses with 
1 tablespoon of fertilizer and the rose bushes produce 50 blossoms, a little bit more 
fertilizer may increase the number of blossoms, but 100 tablespoons of fertilizer will 
not produce 5000 blossoms but almost certainly kill the plants (Figure 1.5). Just a 
small amount of additional sun exposure turns a tan into sunburn. Now imagine 
that thousands of components, many of which we do not know, respond in such a 
fashion, where a small input does not evoke any response, more input evokes a 
physiological response, and a little bit more input causes the component to fail or 
exhibit a totally different “stress” response. We will return to this issue later in this 
and other chapters with specific examples.

reDuctIonIsM AnD sYsteMs bIoLoGY

So the situation is complicated. But because we humans are a curious species, our 
forebears did not give up on biological analysis and instead did what was doable, 
namely collecting information on whatever could be measured with the best current 
methods (Figure 1.6). By now, this long-term effort has resulted in an amazing list of 
biological parts and their roles. Initially, this list contained new plant and animal 



Chapter 1: biological systems6

Figure 1.6 Collecting information is the 

first step in most systems analyses. The 
eighteenth-century British explorer Captain 
James Cook sailed the Pacific Ocean and 
catalogued many plants and animal species 
that had never been seen before in Europe.

species, along with descriptions of their leaves, berries, and roots, or their body 
shapes, legs, and color patterns. These external descriptions were valuable, but did 
not provide specific clues on how plants and animals function, why they live, and 
why they die. Thus, the next logical step was to look inside—even if this required 
stealing bodies from the cemetery under a full moon! Cutting bodies open revealed 
an entirely new research frontier. What were all those distinct body parts and what 
did they do? What were organs, muscles, and tendons composed of? Not surpris-
ingly, this line of investigation eventually led to the grand-challenge quest of discov-
ering and measuring all parts of a body, the parts of the parts (. . . of the parts), as well 
as their roles in the normal physiology or pathology of cells, organs, and organisms. 
The implicit assumption of this reductionist approach was that knowing the building 
blocks of life would lead us to a comprehensive understanding of how life works.

If we fast-forward to the twenty-first century, have we succeeded and assembled 
a complete parts catalog? Do we know the building blocks of life? The answer is a 
combination of yes’s and no’s. The catalog is most certainly not complete, even for 
relatively simple organisms. Yet, we have discovered and characterized genes, pro-
teins, and metabolites as the major building blocks. Scientists were jubilant when 
the sequencing of the human genome in the early years of this millennium was 
declared complete: we had identified the ultimate building blocks, our entire blue-
print. It turned out to consist of roughly three billion nucleotide pairs of DNA.

The sequencing of the human genome was without any doubt an incredible 
achievement. Alas, there is much more to a human body than genes. So, the race for 
building blocks extended to proteins and metabolites, toward individual gene varia-
tions and an assortment of molecules and processes affecting gene expression, 
which changes in response to external and internal stimuli, during the day, and 
throughout our lifetimes. As a direct consequence of these ongoing efforts, our parts 
list  continues to grow at a rapid pace: A parts catalog that started with a few organs 
now contains over 20,000 human genes, many more genes from other organisms, 
and hundreds of thousands of proteins and metabolites along with their variants. In 
addition to merely looking at parts in isolation, we have begun to realize that most 
biological components are affected and regulated by a variety of other components. 
The expression of a gene may depend on several transcription factors, metabolites, 
and a variety of small RNAs, as well as molecular, epigenetic attachments to its DNA 
sequence. It is reasonable to expect that the list of processes within the body is much 
larger than the number of components on our parts list. Biologists will not have to 
worry about job security any time soon!

The large number of components and processes alone, however, is not the 
only obstacle to understanding how cells and organisms function. After all, modern 
computers can execute gazillions of operations within a second. Our billions of 
 telephones worldwide are functionally connected. We can make very accurate 



7reDuctIonIsM AnD sYsteMs bIoLoGY

 predictions regarding a gas in a container, even if trillions of molecules are involved. 
If we increase the pressure on the gas without changing the volume of the container, 
we know that the temperature will rise, and we can predict by how much. Not so with 
a cell or organism. What will happen to it if the environmental temperature goes up? 
Nothing much may happen, the rise in temperature may trigger a host of physiologi-
cal response processes that compensate for the new conditions, or the organism may 
die. The outcome depends on a variety of factors that collectively constitute a com-
plex stress response system (Figure 1.7). Of course, the comparison to a gas is not 

Figure 1.7 Stress responses are coordinated by systems at different levels of organization (cf. Figure 1.2). At the physiological level, the stress 
response system in plants includes changes at the cellular, organ, and whole-plant levels and also affects interactions of the plant with other species. 
(From Keurentjes JJB, Angenent GC, Dicke M, et al. Trends Plant Sci. 16 [2011] 183–190. With permission from Elsevier.)
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Chapter 1: biological systems8

quite fair, because, in addition to their large number, the components of a cell are not 
all the same, which drastically complicates matters. Furthermore, as mentioned ear-
lier, the processes with which the components interact are nonlinear, and this per-
mits an enormous repertoire of distinctly different behaviors with which an organism 
can respond to a perturbation.

eVen sIMPLe sYsteMs cAn conFuse us

It is easy to demonstrate how quickly our intuition can be overwhelmed by a few 
nonlinearities within a system. As an example, let’s look at a simple chain of  processes 
and compare it with a slightly more complicated chain that includes regulation [3]. 
The simple case merely consists of a chain of reactions, which is fed by an external 
input (Figure 1.8). It does not really matter what X, Y, and Z represent, but, for the 
sake of discussion, imagine a metabolic pathway such as glycolysis, where the input, 
glucose, is converted into glucose 6-phosphate, fructose 1,6- bisphosphate, and pyru-
vate, which is used for other purposes that are not of interest here. For illustrative 
purposes, let’s explicitly account for an enzyme E that catalyzes the conversion of X 
into Y.

We will learn in the following chapters how one can formulate a model of such a 
pathway system as a set of differential equations. And while the details are not 
important here, it does not hurt to show such a model, which might read

ɺ

ɺ

ɺ

X Input aEX

Y aEX bY

Z bY cZ

= −

= −

= −

0 5

0 5 0 5

0 5 0 5

.

. .

. .

,

,

.

 (1.1)

Here, X, Y, and Z are concentrations, E is the enzyme activity, and a, b, and c are rate 
constants that respectively represent how fast X is converted into Y, how fast Y is 
converted into Z, and how quickly material from the metabolite pool Z leaves the 
system. The dotted quantities on the left of the equal signs are differentials that 
describe the change in each variable over time, but we need not worry about them 
at this point. In fact, we hardly have to analyze these equations mathematically to 
get an idea of what will happen if we change the input, because intuition tells us that 
any increase in Input should lead to a corresponding rise in the concentrations of 
the intermediates X, Y, and Z, whereas a decrease in Input should result in smaller 
values of X, Y, and Z. The increases or decreases in X, Y, and Z will not necessarily be 
exactly of the same extent as the change in Input, but the direction of the change 
should be the same. The mathematical solution of the system in (1.1) confirms this 
intuition. For instance, if we reduce Input from 1 to 0.75, the levels of X, Y, and Z 
decrease, one after another, from their initial value of 1 to 0.5625 (Figure 1.9).

Now suppose that Z is a signaling molecule, such as a hormone or a phospho-
lipid, that activates a transcription factor TF that facilitates the up-regulation of a 
gene G that codes for the enzyme catalyzing the conversion of X into Y (Figure 1.10). 
The simple linear pathway is now part of a functional loop. The organization of this 
loop is easy to grasp, but what is its effect? Intuition might lead us to believe that the 
positive-feedback loop should increase the level of enzyme E, which would result in 
more Y, more Z, and even more E, which would result in even more Y and Z. Would 
the concentrations in the system grow without end? Can we be sure about this pre-
diction? Would an unending expansion be reasonable? What will happen if we 
increase or decrease the input as before?

The overall answer will be surprising: the information given so far does not allow 
us to predict particular responses with any degree of reliability. Instead, the answer 
depends on the numerical specifications of the system. This is bad news for the 
unaided human mind, because we are simply not able to assess the numerical con-
sequences of slight changes in a system, even if we can easily grasp the logic of a 
system as in Figure 1.10.

To get a feel for the system, one can compute a few examples with an expanded 
model that accounts for the new variables (for details, see [3]). Here, the results are 
more important than the technical details. If the effect of Z on TF is weak, the 
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Figure 1.9 Simulations with the system 

in (1.1) confirm our intuition: X, Y, and 
Z reflect changes in Input. For instance, 
reducing Input in (1.1) to 75% at time 
10 (arrow) leads to permanent decreases 
in X, Y, and Z.

Input X ZY

E G TF

Figure 1.10 Even simple systems may 

not allow us to make reliable predictions 

regarding their responses to stimuli. 
Here, the linear pathway from Figure 1.8 is 
embedded into a functional loop consisting 
of a transcription factor TF and a gene G that 
codes for enzyme E. As described in the text, 
the responses to changes in Input are no 
longer obvious.

Input X ZY

E

Figure 1.8 The human brain handles 

linear chains of causes and events very 

well. In this simple pathway, an external 
input is converted sequentially into X, Y, and 
Z, which leaves the system. The conversion of 
X into Y is catalyzed by an enzyme E. It is easy 
to imagine that any increase in Input will 
cause the levels of X, Y, and Z to rise.
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response to a decrease in Input is essentially the same as in Figure 1.9. This is not too 
surprising, because the systems in this case are very similar. However, if the effect of 
Z on TF is stronger, the concentrations in the system start to oscillate, and after a 
while these oscillations dampen away (Figure 1.11A). This behavior was not easy to 
predict. Interestingly, if the effect is further increased, the system enters a stable 
oscillation pattern that does not cease unless the system input is changed again 
 (Figure 1.11B).

The hand-waving explanation of these results is that the increased enzyme activ-
ity leads to a depletion of X. A reduced level of X leads to lower levels of Y and Z, 
which in turn lead to a reduced effect on TF, G, and ultimately E. Depending on the 
numerical characteristics, the ups and downs in X may not be noticeable, they may 
be damped and disappear, or they may persist until another change is introduced. 
Intriguingly, even if we know that these alternative responses are possible, the 
unaided human mind is not equipped to integrate the numerical features of the 
model in such a way that we can predict which system response will ensue for a 
specific setting of parameters. A computational model, in contrast, reveals the 
answer in a fraction of a second.

The specific details of the example are not as important as the take-home mes-
sage: If a system contains regulatory signals that form functional loops, we can no 
longer rely on our intuition for making reliable predictions. Alas, essentially all real-
istic systems in biology are regulated—and not just with one, but with many control 
loops. This leads to the direct and sobering deduction that intuition is not sufficient 
and that we instead need to utilize computational models to figure out how even 
small systems work and why they might show distinctly different responses or even 
fail, depending on the conditions under which they operate.

The previous sections have taught us that biological systems contain large num-
bers of different types of components that interact in potentially complicated ways 
and are controlled by regulatory signals. What else is special about biological sys-
tems? Many answers could be given, some of which are discussed throughout this 
book. For instance, two biological components are seldom 100% the same. They vary 
from one organism to the next and change over time. Sometimes these variations are 
inconsequential, at other times they lead to early aging and disease. In fact, most 

Figure 1.11 Simulation results 

demonstrate that the looped system 

in Figure 1.10 may exhibit drastically 

different responses. If the effect of Z on TF 
is very small, the response is essentially like 
that in Figure 1.9 (results not shown). (A) If 
the effect of Z on TF is relatively small, the 
functional feedback loop causes the system 
to go through damped oscillations before 
assuming a new stable state. (B) For stronger 
effects of Z on TF, the system response is a 
persistent oscillation.
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